
Babylonian Mathematics1

1 Introduction

Our first knowledge of mankind�s use of mathematics comes from the
Egyptians and Babylonians. Both civilizations developed mathematics
that was similar in scope but different in particulars. There can be no
denying the fact that the totality of their mathematics was profoundly
elementary2, but their astronomy of later times did achieve a level com-
parable to the Greeks.

Assyria

2 Basic Facts

The Babylonian civilization has its roots dating to 4000BCE with the
Sumerians in Mesopotamia. Yet little is known about the Sumerians.
Sumer was first settled between 4500 and 4000 BC by a non-Semitic

1 c°2002, G. Donald Allen
2Neugebauer, 1951
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people who did not speak the Sumerian language. These people now
are called Ubaidians, for the village Al-Ubaid, where their remains were
first uncovered. Even less is known about their mathematics. Of the
little that is known, the Sumerians of the Mesopotamian valley built
homes and temples and decorated them with artistic pottery and mo-
saics in geometric patterns. The Ubaidians were the first civilizing force
in the region. They drained marshes for agriculture, developed trade
and established industries including weaving, leatherwork, metalwork,
masonry, and pottery. The people called Sumerians, whose language
prevailed in the territory, probably came from around Anatolia, proba-
bly arriving in Sumer about 3300 BC. For a brief chronological outline
of Mesopotamia see
http://www.gatewaystobabylon.com/introduction/briefchonology.htm. See
also http://www.wsu.edu:8080/�dee/MESO/TIMELINE.HTM for more
detailed information.

The early Sumerians did have writing for numbers as shown below.
Owing to the scarcity of resources, the Sumerians adapted the ubiquitous
clay in the region developing a writing that required the use of a stylus
to carve into a soft clay tablet. It predated the

1 10 60 600 3,600 36,000

cuneiform (wedge) pattern of writing that the Sumerians had developed
during the fourth millennium. It probably antedates the Egyptian hiero-
glyphic may have been the earliest form of written communication. The
Babylonians, and other cultures including the Assyrians, and Hittites,
inherited Sumerian law and literature and importantly their style of writ-
ing. Here we focus on the later period of the Mesopotamian civilization
which engulfed the Sumerian civilization. The Mesopotamian civiliza-
tions are often called Babylonian, though this is not correct. Actually,
Babylon3 was not the first great city, though the whole civilization is
called Babylonian. Babylon, even during its existence, was not always

3The first reference to the Babylon site of a temple occurs in about 2200 BCE. The name means �gate
of God.� It became an independent city-state in 1894 BCE and Babylonia was the surrounding area. Its
location is about 56 miles south of modern Baghdad.
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the center of Mesopotamian culture. The region, at least that between
the two rivers, the Tigris and the Euphrates, is also called Chaldea.

The dates of the Mesopotamian civilizations date from 2000-600
BCE. Somewhat earlier we see the unification of local principates by
powerful leaders � not unlike that in China. One of the most powerful
was Sargon the Great (ca. 2276-2221 BC). Under his rule the region
was forged into an empire called the dynasty of Akkad and the Akka-
dian language began to replace Sumerian. Vast public works, such as
irrigation canals and embankment fortifications, were completed about
this time. These were needed because of the nature of the geography
combined with the need to feed a large population. Because the Trigris
and Euphrates would flood in heavy rains and the clay soil was not very
absorptive, such constructions were necessary if a large civilization was
to flourish.

Later in about 2218 BCE tribesmen from the eastern hills, the
Gutians, overthrew Akkadian rule giving rise to the 3rd Dynasty of Ur.
They ruled much of Mesopotamia. However, this dynasty was soon
to perish by the influx of Elamites from the north, which eventually
destroyed the city of Ur in about 2000 BC. These tribes took command
of all the ancient cities and mixed with the local people. No city gained
overall control until Hammurabi of Babylon (reigned about 1792-1750
BCE) united the country for a few years toward the end of his reign.

The Babylonian �texts� come to us in the form of clay tablets,
usually about the size of a hand. They were inscribed in cuneiform, a
wedge-shaped writing owing its appearance to the stylus that was used
to make it. Two types of mathematical tablets are generally found,
table-texts and problem texts. Table-texts are just that, tables of values
for some purpose, such as multiplication tables, weights and measures
tables, reciprocal tables, and the like. Many of the table texts are clearly
�school texts�, written by apprentice scribes. The second class of tablets
are concerned with the solutions or methods of solution to algebraic or
geometrical problems. Some tables contain up to two hundred problems,
of gradual increasing difficulty. No doubt, the role of the teacher was
significant.

Babylon fell to Cyrus of Persia in 538 BC, but the city was spared.
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The Darius inscription on cliff near Bisotun

The great empire was finished. However, another period of Babylonian
mathematical history occurred in about 300BCE, when the Seleucids,
successors of Alexander the Great came into command. The 300 year
period has furnished a great number of astronomical records which
are remarkably mathematical � comparable to Ptolemy�s Almagest.
Mathematical texts though are rare from this period. This points to the
acuity and survival of the mathematical texts from the old-Babylonian
period (about 1800 to 1600 BCE), and it is the old period we will focus
on.

The use of cuneiform script formed a strong bond. Laws, tax ac-
counts, stories, school lessons, personal letters were impressed on soft
clay tablets and then were baked in the hot sun or in ovens. From one re-
gion, the site of ancient Nippur, there have been recovered some 50,000
tablets. Many university libraries have large collections of cuneiform
tablets. The largest collections from the Nippur excavations, for ex-
ample, are to be found at Philadelphia, Jena, and Istanbul. All total,
at least 500,000 tablets have been recovered to date. Even still, it is
estimated that the vast bulk of existing tablets is still buried in the ruins
of ancient cities.
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Deciphering cuneiform succeeded the Egyptian hieroglyphic. In-
deed, just as for hieroglyphics, the key to deciphering was a trilingual
inscription found by a British office, Henry Rawlinson (1810-1895),
stationed as an advisor to the Shah. In 516 BCE Darius the Great, who
reigned in 522-486 BCE, caused a lasting monument4 to his rule to be
engraved in bas relief on a 100× 150 foot surface on a rock cliff, the
�Mountain of the Gods� at Behistun5 at the foot of the Zagros Moun-
tains in the Kermanshah region of modern Iran along the road between
modern Hamadan (Iran) and Baghdad, near the town of Bisotun. In
antiquity, the name of the village was Bagastâna, which means �place
where the gods dwell�.

Like the Rosetta stone, it was inscribed in three languages � Old
Persian, Elamite, and Akkadian (Babylonian). However, all three were
then unknown. Only because Old Persian has only 43 signs and had
been the subject of serious investigation since the beginning of the cen-
tury was the deciphering possible. Progress was very slow. Rawlinson
was able to correctly assign correct values to 246 characters, and more-
over, he discovered that the same sign could stand for different con-
sonantal sounds, depending on the vowel that followed. (polyphony)
It has only been in the 20th century that substantial publications have
appeared. Rawlinson published the completed translation and grammar
in 1846-1851. He was eventually knighted and served in parliament
(1858, 1865-68).

For more details on this inscription, see the article by Jona Lendering
at
http://www.livius.org/be-bm/behistun/behistun01.html. A translation is
included.

3 Babylonian Numbers

In mathematics, the Babylonians (Sumerians) were somewhat more ad-
vanced than the Egyptians.

� Their mathematical notation was positional but sexagesimal.
4According to some sources, the actual events described in the monument took place be-

tween 522 and 520 BCE.
5also spelled Bi

¯
stou
¯
n
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� They used no zero.

� More general fractions, though not all fractions, were admitted.

� They could extract square roots.

� They could solve linear systems.

� They worked with Pythagorean triples.

� They solved cubic equations with the help of tables.

� They studied circular measurement.

� Their geometry was sometimes incorrect.

For enumeration the Babylonians used symbols for 1, 10, 60, 600,
3,600, 36,000, and 216,000, similar to the earlier period. Below are
four of the symbols. They did arithmetic in base 60, sexagesimal.

1 10 60 600

Cuneiform numerals

For our purposes we will use just the first two symbols

∨ = 1 ≺ = 10

All numbers will be formed from these.

Example: ≺≺
≺≺≺

∨ ∨ ∨
∨ ∨ ∨∨ = 57

Note the notation was positional and sexagesimal:

≺≺ ≺≺= 20 · 60 + 20
∨ ∨ ∨∨ ≺ ∨ = 2 · 602 + 2 · 60 + 21 = 7, 331

The story is a little more complicated. A few shortcuts or abbre-
viation were allowed, many originating in the Seleucid period. Other
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devices for representing numbers were used. Below see how the number
19 was expressed.

= 19
= 19
= 19

Old Babylonian.  The symbol    means subtraction.

Cursive form
Seleucid Period(c. 320 BC to c. 620 AD)

Formal

Three ways to express the number 19

The horizontal symbol above the �1� designated subtraction.

There is no clear reason why the Babylonians selected the sexages-
imal system6 . It was possibly selected in the interest of metrology, this
according to Theon of Alexandria, a commentator of the fourth century
A.D.: i.e. the values 2,3,5,10,12,15,20, and 30 all divide 60. Remnants
still exist today with time and angular measurement. However, a num-
ber of theories have been posited for the Babylonians choosing the base
of 60. For example7

1. The number of days, 360, in a year gave rise to the subdivision
of the circle into 360 degrees, and that the chord of one sixth of a
circle is equal to the radius gave rise to a natural division of the
circle into six equal parts. This in turn made 60 a natural unit of
counting. (Moritz Cantor, 1880)

2. The Babylonians used a 12 hour clock, with 60 minute hours.
That is, two of our minutes is one minute for the Babylonians.
(Lehmann-Haupt, 1889) Moreover, the (Mesopotamian) zodiac
was divided into twelve equal sectors of 30 degrees each.

3. The base 60 provided a convenient way to express fractions from a
variety of systems as may be needed in conversion of weights and
measures. In the Egyptian system, we have seen the values 1/1,
1/2, 2/3, 1, 2, . . . , 10. Combining we see the factor of 6 needed
in the denominator of fractions. This with the base 10 gives 60 as
the base of the new system. (Neugebauer, 1927)

4. The number 60 is the product of the number of planets (5 known at
the time) by the number of months in the year, 12. (D. J. Boorstin,

6Recall, the very early use of the sexagesimal system in China. There may well be a connection.
7See Georges Ifrah, The Universal History of Numbers, Wiley, New York, 2000.
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1986)

5. The combination of the duodecimal system (base 12) and the base
10 system leads naturally to a base 60 system. Moreover, duodeci-
mal systems have their remnants even today where we count some
commodities such as eggs by the dozen. The English system of
fluid measurement has numerous base twelve values. As we see
in the charts below, the base twelve (base 3, 6?) and base two
graduations are mixed. Similar values exist in the ancient Roman,
Sumerian, and Assyrian measurements.

fluid

ounce

1 teaspoon = 1 1/3 1/6

1 tablespoon = 3 1 1/2

1 fluid ounce = 6 2 1

1 gill = 24 8 4

1 cup = 48 16 8

1 pint = 96 32 16

1 quart = 192 64 32

1 gallon = 768 256 128

1 firkin = 6912 2304 1152

1 hogshead = 48384 16128 8064

teaspoon tablespoon

inch foot yard

1 inch = 1 1/12 1/36

1 foot = 12 1 1/3

1 yard = 36 3 1

1 mile = - - - 5280 1760

Note that missing in the first column of the liquid/dry measurement
table is the important cooking measure 1/4 cup, which equals 12
teaspoons.

6. The explanations above have the common factor of attempting to
give a plausibility argument based on some particular aspect of
their society. Having witnessed various systems evolve in modern
times, we are tempted to conjecture that a certain arbitrariness may
be at work. To create or impose a number system and make it apply
to an entire civilization must have been the work of a political
system of great power and centralization. (We need only consider
the failed American attempt to go metric beginning in 1971. See,
http://lamar.colostate.edu/ hillger/dates.htm) The decision to adapt
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the base may have been may been made by a ruler with little more
than the advice merchants or generals with some vested need.
Alternatively, with the consolidation of power in Sumeria, there
may have been competing systems of measurement. Perhaps, the
base 60 was chosen as a compromise.

Because of the large base, multiplication was carried out with the
aide of a table. Yet, there is no table of such a magnitude. Instead
there are tables up to 20 and then selected values greater (i.e. 30, 40,
and 50). The practitioner would be expected to decompose the number
into a sum of smaller numbers and use multiplicative distributivity.

A positional fault??? Which is it?

≺≺ = 10 · 60 + 10
= 10 · 602 + 10 = 3, 610
= 10 +

10

60
= 20(???)

1. There is no �gap� designator.

2. There is a true floating point � its location is undetermined except
from context.

? The �gap� problem was overcome in the Seleucid period with
the invention of a �zero� as a gap separator.

We use the notation:

d1; d2, d3, . . . = d1 +
d2
60
+
d3
602

+ · · ·

The values d1; d2, d3, d4, . . . are all integers.

Example

∨≺≺
∨∨
∨∨ ≺

≺≺
≺≺∨ ≺

1; 24, 51, 10 = 1 +
24

60
+
51

602
+
10

603

= 1.41421296



Babylonian Mathematics 10

This number was found on the Old Babylonian Tablet (Yale Collection
#7289) and is a very high precision estimate of

√
2. We will continue

this discussion shortly, conjecturing on how such precision may have
been obtained.

The exact value of
√
2, to 8 decimal places is = 1.41421356.

Fractions. Generally the only fractions permitted were such as

2

60
,
3

60
,
5

60
,
12

60
, . . .

because the sexagesimal expression was known. For example,

1

6
=
10

60
= ;≺

1

9
= ;

∨ ∨ ∨
∨ ∨ ∨ ,

≺≺
≺≺

Irregular fractions such as 1
7
, 1
11

, etc were not normally not used.
There are some tablets that remark, �7 does not divide�, or �11 does
not divide�, etc.

A table of all products equal to sixty has been found.

2 30 16 3, 45
3 20 18 3,20
4 15 20 3
5 12 24 2,30
6 10 25 2,25
8 7,30 27 2,13,20
9 6,40 30 2
10 6 32 1;52,30
12 5 36 1,40
15 4 40 1,30
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You can see, for example that

8× 7; 30 = 8× (7 + 30
60
) = 60

Note that we did not use the separatrix �;� here. This is because the
table is also used for reciprocals. Thus

1

8
= 0; 7, 30 =

7

60
+
30

602

Contextual interpretation was critical.

Remark. The corresponding table for our decimal system is shown
below. Included also are the columns with 1 and the base 10. The
product relation and the decimal expansion relations are valid in base
10.

1 10
2 5
5 2
10 1

Two tablets found in 1854 at Senkerah on the Euphrates date from
2000 B.C. They give squares of the numbers up to 59 and cubes up to
32. The Babylonians used the formula

xy = ((x+ y)2 − (x− y)2)/4
to assist in multiplication. Division relied on multiplication, i.e.

x

y
= x · 1

y

There apparently was no long division.

The Babylonians knew some approximations of irregular fractions.

1

59
=; 1, 1, 1

1

61
=; 0, 59, 0, 59

However, they do not appear to have noticed infinite periodic expan-
sions.8

8In the decimal system, the analogous values are 1
9
= 0.1111 . . . and 1

11
= 0.090909 . . ..

Note the use of the units �0� here but not for the sexagesimal. Why?
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They also seemed to have an elementary knowledge of logarithms.
That is to say there are texts which concern the determination of the
exponents of given numbers.

4 Babylonian Algebra

In Greek mathematics there is a clear distinction between the geometric
and algebraic. Overwhelmingly, the Greeks assumed a geometric posi-
tion wherever possible. Only in the later work of Diophantus do we see
algebraic methods of significance. On the other hand, the Babylonians
assumed just as definitely, an algebraic viewpoint. They allowed opera-
tions that were forbidden in Greek mathematics and even later until the
16th century of our own era. For example, they would freely multiply
areas and lengths, demonstrating that the units were of less importance.
Their methods of designating unknowns, however, does invoke units.
First, mathematical expression was strictly rhetorical, symbolism would
not come for another two millenia with Diophantus, and then not sig-
nificantly until Vieta in the 16th century. For example, the designation
of the unknown was length. The designation of the square of the un-
known was area. In solving linear systems of two dimensions, the
unknowns were length and breadth, and length, breadth, and width for
three dimensions.

Square Roots. Recall the approximation of
√
2. How did they get it?

There are two possibilities: (1) Applying the method of the mean. (2)
Applying the approximation

√
a2 ± b ≈ a± b

2a
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Yale Babylonian Collection

30

1 24,51,10;

42 25,35;

Square with side 30

The product of 30 by 1;24,51,10 is precisely 42;25,35.

Method of the mean. The method of the mean can easily be used
to find the square root of any number. The idea is simple: to find
the square root of 2, say, select x as a first approximation and take
for another 2/x. The product of the two numbers is of course 2, and
moreover, one must be less than and the other greater than 2. Take the
arithmetic average to get a value closer to

√
2. Precisely, we have

1. Take a = a1 as an initial approximation.

2. Idea: If a1 <
√
2 then 2

a1
>
√
2.
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3. So take
a2 = (a1 +

2

a1
)/2.

4. Repeat the process.

Example. Take a1 = 1. Then we have

a2 = (1 +
2

1
)/2 =

3

2

a3 = (
3

2
+

2

3/2
)/2 = 1.41666... =

17

12

a4 = (
17

12
+

2

17/12
)/2 =

577

408

Now carry out this process in sexagesimal, beginning with a1 = 1; 25
using Babylonian arithmetic without rounding, to get the value 1;24,51,10.

Note:
√
2 ú=1; 25 = 1.4166... was commonly used as a brief, rough and

ready, approximation. When using sexagesimal numbering, a lot of
information can be compressed into one place.

Solving Quadratics. The Babylonian method for solving quadratics
is essentially based on completing the square. The method(s) are not
as �clean� as the modern quadratic formula, because the Babylonians
allowed only positive solutions. Thus equations always were set in a
form for which there was a positive solution. Negative solutions (indeed
negative numbers) would not be allowed until the 16th century CE.

The rhetorical method of writing a problem does not require vari-
ables. As such problems have a rather intuitive feel. Anyone could un-
derstand the problem, but without the proper tools, the solution would
be impossibly difficult. No doubt this rendered a sense of the mystic
to the mathematician. Consider this example

I added twice the side to the square; the result is 2,51,60.
What is the side?

In modern terms we have the simple quadratic x2 + 2x = 10300.
The student would then follow his �template� for quadratics. This tem-
plate was the solution of a specific problem of the correct mathematical



Babylonian Mathematics 15

type, all written rhetorically. Here is a typical example given in terms
of modern variables. Problem. Solve x(x+ p) = q.

Solution. Set y = x+ p

Then we have the system

xy = q

y − x = p

This gives

4xy + (y − x)2 = p2 + 4q

(y + x)2 = p2 + 4q

x+ y =
q
p2 + 4q

2x+ p =
q
p2 + 4q

x =
−p+√p2 + 4q

2

All three forms

x2 + px = q

x2 = px+ q

x2 + q = px

are solved similarly. The third is solved by equating it to the non-
linear system, x+ y = p, xy = q. The student�s task would be to take
the problem at hand and determine which of the forms was appropriate
and then to solve it by a prescribed method. What we do not know is
if the student was ever instructed in principles of solution, in this case
completing the square. Or was mathematical training essentially static,
with solution methods available for each and every problem that the
practitioner would encounter.

It is striking that these methods date back 4,000 years!

Solving Cubics. The Babylonians even managed to solve cubic equa-
tions, though again only those having positive solutions. However, the
form of the equation was restricted tightly. For example, solving x3 = a
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was accomplished using tables and interpolation. Mixed cubics
x3 + x2 = a

were also solved using tables and interpolation. The general cubic
ax3 + bx2 + cx = d

can be reduced to the normal form
y3 + ey2 = g

To do this one needs to solve a quadratic, which the Babylonians could
do. But did the Babylonians know this reduction?

The Babylonians must have had extraordinary manipulative skills
and as well a maturity and flexibility of algebraic skills.

Solving linear systems. The solution of linear systems were solved
in a particularly clever way, reducing a problem of two variables to
one variable in a sort of elimination process, vaguely reminiscent of
Gaussian elimination. Solve

2

3
x− 1

2
y = 500

x+ y = 1800

Solution. Select �x = �y such that
�x+ �y = 2�x = 1800

So, �x = 900. Now make the model
x = �x+ d y = �y − d

We get
2

3
(900 + d)− 1

2
(900− d) = 500

(
2

3
+
1

2
)d+ 1800/3− 900/2 = 500

7

6
d = 500− 150

d =
6(350)

7
So, d = 300 and thus

x = 1200 y = 600.
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Plimpton 322 tablet
Yale Babylonian collection

5 Pythagorean Triples.

As we have seen there is solid evidence that the ancient Chinese were
aware of the Pythagorean theorem, even though they may not have had
anything near to a proof. The Babylonians, too, had such an awareness.
Indeed, the evidence here is very much stronger, for an entire tablet of
Pythagoreantriples has been discovered. The events surrounding them
reads much like a modern detective story, with the sleuth being archae-
ologist Otto Neugebauer. We begin in about 1945 with the Plimpton
322 tablet, which is now the Babylonian collection at Yale University,
and dates from about 1700 BCE. It appears to have the left section
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broken away. Indeed, the presence of glue on the broken edge indi-
cates that it was broken after excavation. What the tablet contains is
fifteen rows of numbers, numbered from 1 to 15. Below we list a few
of them in decimal form. The first column is descending numerically.
The deciphering of what they mean is due mainly to Otto Neugebauer
in about 1945.

1.9834... 119 169 1
1.94915 3367 4825 2

...
1.38716 56 106 15

Interpreting Plimpton 322. To see what it means, we need a model
right triangle. Write the Pythagorean triples, the edge b in the col-
umn thought to be severed from the tablet. Note that they are listed

decreasing cosecant.

a

c

Right Triangle

b

B

b (c/b)2 a c
120 (169/120)2 119 169 1
3456 (4825/3456)2 3367 4825 2

...
90 (106/90)2 56 106 15

csc2B = (
c

b
)2

A curious fact is that the tablet contains a few errors, no doubt tran-
scription errors made so many centuries ago. How did the Babylonian
mathematicians determine these triples? Why were they listed in this
order? Assuming they knew the Pythagorean relation a2 + b2 = c2,
divide by b to get

(
a

b
)2 + 1 = (

c

b
)2
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u2 + 1 = v2

(u− v)(u+ v) = 1

Choose u+ v and find u− v in the table of reciprocals.

Example. Take u+ v=2;15. Then u− v = 0; 26, 60 Solve for u and v
to get

u = 0; 54, 10 v = 1; 20, 50.

Multiply by an appropriate integer to clear the fraction. We get a = 65,
c = 97. So b = 72. This is line 5 of the table.

It is tempting to think that there must have been known general
principles, nothing short of a theory, but all that has been discovered
are tablets of specific numbers and worked problems.

6 Babylonian Geometry

Circular Measurement. We find that the Babylonians used π = 3
for practical computation. But, in 1936 at Susa (captured by Alexander
the Great in 331 BCE), a number of tablets with significant geometric
results were unearthed. One tablet compares the areas and the squares
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of the sides of the regular polygons of three to seven sides. For example,
there is the approximation

perimeter hexagon
circumference circumscribed circle

= 0; 57, 36

This gives an effective π ≈ 31
8
. (Not bad.)

Volumes. There are two forms for the volume of a frustum given

b
b

h

Frustum

a

a

V = (
a+ b

2
)2h

V = h

Ã
(
a+ b

2
)2 − 1

3
(
a− b
2
)2
!

The second is correct, the first is not.

There are many geometric problems in the cuneiform texts. For
example, the Babylonians were aware that

� The altitude of an isosceles triangle bisects the base.

� An angle inscribed in a semicircle is a right angle. (Thales)

7 Summary of Babylonian Mathematics

That Babylonian mathematics may seem to be further advanced than
that of Egypt may be due to the evidence available. So, even though
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we see the development as being more general and somewhat broader in
scope, there remain many similarities. For example, problems contain
only specific cases. There seem to be no general formulations. The lack
of notation is clearly detrimental in the handling of algebraic problems.

There is an absence of clear cut distinctions between exact and
approximate results.

Geometric considerations play a very secondary role in Babylonian alge-
bra, even though geometric terminology may be used. Areas and lengths
are freely added, something that would not be possible in Greek mathe-
matics. Overall, the role of geometry is diminished in comparison with
algebraic and numerical methods. Questions about solvability or in-
solvability are absent. The concept of �proof� is unclear and uncertain.
Overall, there is no sense of abstraction. In sum, Babylonian mathe-
matics, like that of the Egyptians, is mostly utilitarian � but apparently
more advanced.

8 Exercises

1. Express the numbers 76, 234, 1265, and 87,432 in sexagesimal.

2. Compute the products

(a) 1, 23× 2, 9
(b) 2, 4, 23× 3, 34

3. A problem on one Babylonian tablets give the base and top of an
isosceles trapezoid to be 50 and 40 respectively and the side length
to be 30. Find the altitude and area. Can this be done without the
Pythagorean theorem?

4. Solve the following system ála the Babylonian �false position�
method. State clearly what steps you are taking.

2x+ 3y = 1600

5x+ 4y = 2600

(The solution is (200, 400).)
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5. Generalize this Babylonian algorithm for solving linear systems to
arbitrary linear systems in two variables?

6. Generalize this Babylonian algorithm for solving linear systems to
arbitrary linear systems?

7. Modify the Babylonian root finding method (for
√
2) to find the

square root of any number. Use your method to approximate
√
3.

Begin with x0 = 1.

8. Explain how to adapt the method of the mean to determine 3
√
2.

9. Consider the table:

n n3 + n2

1 2
2 12
3 36
4 80
5 150
6 252

Solve the following prob-

lems using this table and linear interpolation. Compare with the
exact values. (You can obtain the exact solutions, for example, by
using Maple: evalf(solve(x3+x2 = a, x)); Here a=the right side)

(a) x3 + x2 = 55
(b) x3 + x2 = 257

10. Show that the general cubic ax3 + bx2 + cx = d can be reduced
to the normal form y3 + ey2 = g.

11. Show how the perimeter identity is used to derive the approxima-
tion for π.

12. Write a lesson plan wherein you show students how to factor
quadratics ála the Babylonian methods. You may use variables,
but not general formulas.


